Complex Algebraic Surfaces Class 12

نویسنده

  • RAVI VAKIL
چکیده

(i) is the most important one. We showed that extensions < = are classified by >@?A& 1 B DCE GF ( . The element 0 corresponded to a splitting. If one element is a non-zero multiple of the other, they correspond to the same , although different extensions. As an application, we proved: Proposition. Every rank 2 locally free sheaf on ? is a direct sum of invertible sheaves. I can’t remember if I stated the implication: Every geometrically ruled surface over ? is isomorphic to a Hirzebruch surface

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex Algebraic Surfaces Class 18

It makes use of the last general construction commonly used in the theory of algebraic surfaces, the Albanese variety. After seeing this, I think you’ll be fully equipped to read much of the literature on surfaces in the algebraic category. On Friday, the last day of class, I’ll then sketch the rest of the classification of algebraic surfaces. In particular, you’re familiar with all the ingredi...

متن کامل

Curve Complexes of Non-orientable Surfaces

We explore non-orientable surfaces and their associated curve complexes. Studying the combinatorics modeled by the curve complex of a surface helps elucidate the algebraic properties of the mapping class group of the surface. We begin by studying geometric properties of the curve complexes of non-orientable surfaces and the geometric properties of natural sub-complexes of the curve complex. Fin...

متن کامل

CW Complexes for Complex Algebraic Surfaces

We describe CW complexes for complex projective algebraic surfaces in the context of practical computation of topological invariants. CW COMPLEXES FOR COMPLEX ALGEBRAIC SURFACES

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002